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Abstract— We investigate optimal estimation for both the
position and the velocity of the ground moving target (GMT)
by employing sensors composed of unmanned aerial vehicles
(UAVs). The problem is the cooperative sensing by the UAVs,
in terms of their location geometries to achieve optimal
estimation of the GMT. Based on the Cramér-Rao bound,
we are able to derive the minimum achievable error variance
in estimation of the position and the velocity of the GMT,
and obtain the optimal geometries of the UAV sensors via
minimization of the minimum achievable error variance for
unbiased estimation commanded by the Cramér-Rao bound.
Our solution is complete that encompasses various situations
for the GMT, and the number of UAV sensors.

1. INTRODUCTION

Cooperative sensing with UAVs plays an important role in
combat ISR (intelligence, surveillance, and reconnaissance),
such as GMTI (ground moving target identification) and
MSTE (moving surface target engagement). The objective
is the early identification and localization of the threat GMT
of interest, estimate and track the GMTs in terms of their
position and velocities. The ultimate goal is the destruction
of the threat GMT. A problem arising from GMTI and
MSTE is the sensor geometries: how to cooperate the
UAV sensors in terms of their locations to achieve optimal
estimation of the position and velocity of the GMT? We
assume that the observed data by UAV sensors are radar
signals, comprised of noisy azimuth, range, and range
rate information. For simplicity we also assume that the
observed data are corrupted by Gaussian noise. Based on the
well-known Cramér-Rao bound, we provide an answer to
the cooperative and optimal sensing problem. We will show
that the minimum achievable error variance for estimation
of the position and velocity of a given GMT amounts to
maximization of certain mathematical quantity that involves
the angular positions of the UAV sensors, assuming that
all UAV sensors have the same distance to the GMT. The
orthogonal, or near orthogonal sensor geometries for UAVs
are preferred in most of the applications. We will provide a
complete solution to the optimal sensor geometry problem
with an arbitrary number of UAV sensors that encompasses
various situations for the GMT.

The work to be reported in this paper is related to the
general problem of target localization [1], [2], [3], [6], [7].
The emphasis of this paper is placed on the geometries
of the UAV sensors in optimal estimation of not only

position, i.e., localization, but also velocity of the GMT
due to tracking, which is relatively new. We consider the
case of two-dimensional plane for the coverage field, which
is adequate, if the elevation of the field is known a priori,
that is true in most of the applications. The problem of
cooperative sensing is also related to collaborative signal
processing [4] in the sense that sensors need work together
to achieve optimal estimation. The notations in this paper
are standard. The inner-product and the Euclidean norm
of column vectors are denoted by < ·, · >, and ‖ · ‖,
respectively, and the transpose by ·T . Other notations will
be made clear as we proceed.

2. COOPERATIVE ESTIMATION

Let the number of UAV sensors be m > 1, with their
respective positions and velocities known. For the kth UAV,
its position and velocity at time t are denoted by �pk(t), and
�vk(t), respectively. Let �pT (t), and �vT (t) be the position and
velocity of the GMT respectively. Then

�pT (t) = �pk(t)+δ�pk(t), �vT (t) =
d�pT (t)

dt
= �vk(t)+δ�vk(t),

with δ�pk(t) and δ�vk(t) being the respective differences of
the position and velocity, respectively, between the GMT
and the kth UAV. Let the x-axis be associated with east-
west, and y-axis associated with north-south. Then we have
the following representations:

�pk(t) =

[
xk(t)

yk(t)

]
, �vk(t) =

[
ẋk(t)

ẏk(t)

]
,

δ�pk(t) =

[
δxk(t)

δyk(t)

]
, δ�vk(t) =

[
δẋk(t)

δẏk(t)

]
.

Let θk(t) = � δ�pk(t) be the argument of δ�pk(t), that is the
bearing parameter between the kth UAV and the GMT (cf.
Fig. 1).
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Fig. 1 The GMT and the observable cone by UAV
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The radial velocity of the GMT observed by the kth UAV
induces the Doppler shift, denoted by ωk(t), which is given
by

ωk(t) = cos(θk(t))ẋT (t) + sin(θk(t))ẏT (t). (1)

For simplicity we will skip the time variable t in sequel.
We comment that ωk is the orthogonal projection of �vT

onto δ�pk, i.e., ωk = ‖�vT ‖ cos (θk − � �vT ). The greater the
velocity �vT , the easier for radars to capture its movement
in measuring its azimuth, range, and range rate. Hence the
observation of the range rate by the kth UAV sensor has
the form of

zk(ω) = f(ωk)ωk + ηk(ω), (2)

where ηk(ω) is the Gaussian noise with variance σ2
ωk

,
and f(·) is a nonlinear function characterizing the GMT
indication. As a rule of thumb, the GMT is undetectable if
ωk is smaller than 10 kilometers per hour, which is taken
as the critical velocity, denoted by ωTc

.
Suppose that ωk is large enough such that the GMT is

observable, or f(ωk) = 1. Then[
zk(x)

zk(y)

]
=

[
xT

yT

]
+

[
ηk(x)

ηk(y)

]
(3)

are observations of �pT by the kth UAV sensor with ηk(x)

and ηk(y) white Gaussian noise of zero mean. If θk = 0,
then ηk(x) and ηk(y) are the corruption noises in measuring
the range and azimuth respectively. Thus ηk(x) and ηk(y)

are uncorrelated with variances σ2
xk

= σ2
rk

(range variance)
and σ2

yk
= σ2

ak
(azimuth variance), respectively. Or the joint

probability density (JPD) is

p[ηk(x), ηk(y)] =
1

2πσrk
σak

exp

(
−

1

2

[
η2

k(x)

σ2
rk

+
η2

k(y)

σ2
ak

])
.

That is, the constant probability density contour has an
ellipsoidal shape. But if θk �= 0, then ηk(x) and ηk(y) are
correlated, and the covariance matrix is given by

Σθk
= U(θk)

[
σ2

rk
0

0 σ2
ak

]
U(θk)T ,

where U(·) is a rotation matrix, given by

U(θ) =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
.

It follows that the the JPD has the form of

p[ηk(x), ηk(y)] =

exp

(
− 1

2

[
ηk(x)

ηk(y)

]T

Σ−1

θk

[
ηk(x)

ηk(y)

])

2π
√

det(Σθk
)

.

(4)
It should be clear that the unitary matrix U(θ) performs
rotation of angle θ. For simplicity we assume that each
UAV sensor has the same noise variances for measuring the
azimuth, range, and range rate, respectively, if the distances

to the GMT are the same, which are true, provided that
identical sensors are used in each UAV.

The position measurement (3) assumes that ωk ≥ ωc. In
the general case, the observation of the position of the GMT
in (3) needs be replaced by[

zk(x)

zk(y)

]
=

[
xT

yT

]
f(ωk) +

[
ηk(x)

ηk(y)

]
, (5)

where the noise has the JPD as in (4). Denote

χ =
[

xT yT ẋT ẏT

]T
, (6)

Ck = f(ωk)

⎡
⎣ 0 0 cos(θk) sin(θk)

1 0 0 0

0 1 0 0

⎤
⎦ , (7)

η
k

=

⎡
⎣ ηk(ω)

ηk(x)

ηk(y)

⎤
⎦ , zk =

⎡
⎣ zk(ω)

zk(x)

zk(y)

⎤
⎦ . (8)

Combining (2) and (5) yields

zk = Ckχ + η
k
, Σk = E{η

k
ηT

k
} = diag(σ2

ωk
,Σθk

),

(9)
for 1 ≤ k ≤ m. Because f(·) and θk are nonlinear functions
of the parameter vector χ to be estimated, the observed
data vector zk is also a nonlinear function of the parameter
vector χ in general. However it is a special nonlinear
function of the parameter vector. Indeed if θk is known,
and ωk ≥ ωc, then the observed data vector zk becomes a
linear function of the parameter vector χ. It is this quasi-
linearity, which will be exploited in this paper to derive the
Cramér-Rao bound for the underlying estimation problem.

It is noted that Ck is a function of θk. Hence if all UAVs
have the equal distance to the GMT, then the geometries of
the m UAVs are uniquely determined by {θk}

m
k=1

. Recall
that θk is the bearing parameter from the kth UAV to
the GMT. Our cooperative sensing problem is to find the
optimal geometries of m UAVs so that the minimal error
variance of the estimation error is minimized. Denote

ψ =

⎡
⎢⎣

z1

...
zm

⎤
⎥⎦ , C =

⎡
⎢⎣

C1

...
Cm

⎤
⎥⎦ , N =

⎡
⎢⎣

η
1

...
η

m

⎤
⎥⎦ .

It follows that
ψ = Cχ + N . (10)

In light of (9), the Gaussian assumption implies that ψ has
a JPD function

p(ψ;χ) =

exp

{
− 1

2

m∑
k=1

(zk − Ckχ)
T

Σ−1

k (zk − Ckχ)

}

(2π)2m det(Σk)
m
2

.

The error covariance X corresponding to χ̂, any unbiased
estimate of χ, based on observations ψ = Cχ + N ,
is lower bounded by the well known Cramér-Rao bound
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matrix XCR; Its inverse X−1

CR
is the Fisher information

matrix. That is, X ≥ XCR for any unbiased estimation
algorithm. Furthermore the Gaussian distribution implies
that the Cramér-Rao bound is achievable asymptotically.
Our motivation is to minimize XCR by choosing {θk}
correctly, which will yield the optimal geometries of the
UAVs under the assumption of fixed equal distance between
the GMT and each UAV. However minimization of XCR is
a daunting task. Instead we opt to minimize Tr{XCR}, that
is more feasible. We notice that for any unbiased estimate
χ̂, there holds

E{‖χ − χ̂‖2} = Tr{E[(χ − χ̂)(χ − χ̂)T ]}

= Tr{X} ≥ Tr{XCR}.

Consequently minimization of Tr{XCR} makes more sense
in searching for the optimal geometries of the UAVs, which
will be studied in later sections.

3. THE FISHER INFORMATION MATRIX

In this section we compute the Fisher information matrix,
associated with Cramér-Rao bound based on observation
ψ = Cχ+N , by assuming that the distances from UAVs to
the GMT are all the same, and ωk is large enough such that
each UAV is inside the observable cone for which f(ωk) �=
0, and thus Ck �= 0 for 1 ≤ k ≤ m. Let n (= 4) be the
dimension of χ. According to the Slepian-Bangs formula
[7] (page 289), the Fisher information matrix is given by

X−1
CR = −E

{
∂2p(ψ; χ)

∂χ∂χT

}
=

[
1

2
Tr

{
Σ−1 dΣ

dχi
Σ−1 dΣ

dχj

}

+

(
dCχ

dχi

)T

Σ−1

(
dCχ

dχj

)]n,n

i,j=1,1

where Σ = diag(Σ1, Σ2, · · · , Σm), and χk is the kth element
of χ. Because of the diagonal structure, we can compute each
diagonal block separately.

The equal distance assumption for all the UAV to the GMT
implies that ‖δ�pk‖ = ‖δ�p‖, and

ωk = ωT , σωk
= σω, σak

= σa, σrk
= σr,

where 1 ≤ k ≤ m. For the case of single UAV (m = 1), Σ =
diag(σ2

ω, Σθ), and

Σθ = U(θ)diag(σ2
r , σ2

a)U(θ)T , (11)

Σ−1
θ = U(θ)diag(σ−2

r , σ−2
a )U(θ)T . (12)

Direct computation gives

dΣθ

dθ
=
(
σ2

a − σ2
r

) [ sin(2θ) − cos(2θ)
− cos(2θ) sin(2θ)

]
,

and dσ2

ω

dχi
= 0 ∀ i in which we have assumed that σ2

ω is independent
of χ. Since θ is a function of (χ1, χ2) = (xT , yT ), but not a
function of (χ3, χ4) = (ẋT , ẏT ),

−
dθ

dχ1
=

(yT − y)

(xT − x)2 + (yT − y)2
=

sin(θ)

‖δ�p‖
,

dθ

dχ3
= 0,

dθ

dχ2
=

(xT − x)

(xT − x)2 + (yT − y)2
=

cos(θ)

‖δ�p‖
,

dθ

dχ4
= 0,

in light of tan(θ) = (yT − y)/(xT − x). Denote

Γθ =

[
σ−1

r 0
0 σ−1

a

]
U(θ)T dΣθ

dθ
U(θ)

[
σ−1

r 0
0 σ−1

a

]
.

By the property of trace, and the expression of Σθ , we have, in
the case of multiple UAV,

Tr

{
Σ−1 dΣ

dχi
Σ−1 dΣ

dχj

}
=

m∑
µ=1

Tr
{
Γ2

θµ

} dθµ

dχi

dθµ

dχj
.

We choose to skip the complex expression of Tr
{
Γ2

θ

}
, and of the

derivatives of ψ with respect to χi.
We notice that by ωT = ωT (θ) = χ3 cos(θ) + χ4 sin(θ),

[χ4 cos(θ) − χ3 sin(θ)]2 + [χ3 cos(θ) + χ4 sin(θ)]2 = χ2
3 + χ2

4.

It is appropriate to define ωT⊥
(θ) = χ4 cos(θ) − χ3 sin(θ),

which is the orthogonal projection of �vT to the vector that is
perpendicular to δ�p, while ωT is the orthogonal projection of �vT

to the vector δ�p. Hence ωT (θ)2 + ωT⊥
(θ)2 = ‖�vT ‖

2. Let

θ(k)
sc =

[
− sin(θk)
cos(θk)

]
, θ(k)

cs =

[
cos(θk)
sin(θk)

]T

.

Then we obtain the expression for the Fisher information matrix
associated with the Cramér-Rao bound:

X−1
CR =

1

2‖δ�p‖2

m∑
k=1

Tr
{
Γ2

θk

}[ θ
(k)
sc [θ

(k)
sc ]T 0

0 0

]

+

m∑
k=1

[
Σ−1

θk
0

0 0

]

+

m∑
k=1

σ−2
ω

‖δ�p‖2

[
ωT⊥

(θk)θ
(k)
sc

‖δ�p‖θ
(k)
cs

][
ωT⊥

(θk)θ
(k)
sc

‖δ�p‖θ
(k)
cs

]T

Remark 3.1: It is worth to pointing out that ωT⊥
≤ ‖�vT ‖,

which is the driving speed of the GMT. Hence ωT⊥
<< ‖δ�p‖

holds. For this reason, the Fisher information matrix correspond-
ing to the Cramér-Rao bound has an approximate block diagonal

form as XCR ≈ diag
(
X

(v)
CR, X

(p)
CR

)
where X

(v)
CR and X

(p)
CR are

the Cramér-Rao bound matrices for estimation of velocity and
position, respectively. That is, the Cramér-Rao bound matrices for
velocity and position are decoupled, and given respectively by

X
(v)
CR =

(
σ−2

ω

∑m

k=1
θ
(k)
cs [θ

(k)
cs ]T

)
−1

,

X
(p)
CR ≈

(∑m

k=1
Σ−1

θk

)
−1

The approximate expression for X
(p)
CR is due to ‖δ�p‖ >> Tr {Γθk

}
for 1 ≤ k ≤ m.

In the following we consider the Cramér-Rao bounds for
estimation of position and velocity separately, in light of Remark
3.1. For velocity only, the Fisher information matrix has an inverse
as

X
(v)
CR = σ2

ω

[
‖c‖2 < c, s >

< c, s > ‖s‖2

]
−1

where s =
[

s1 · · · sm

]T
and c =

[
c1 · · · cm

]T
with

sk = sin(θk) and ck = cos(θk). It can be verified that

Tr
(
X

(v)
CR

)
=

mσ2
ω

‖c‖2‖s‖2 − | < c, s > |2
. (13)

Clearly the above is minimized, if and only if its denominator
is maximized over {θk}

m
k=1, which determine the geometries of
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the m UAV sensors. For position estimation only, the minimal
achievable error variance based on the Cramér-Rao bound is given
approximately by

Tr
{

X
(p)
CR

}
≈

m(σ−2
r + σ−2

a )

den
(14)

where with δσ2 = (σ−2
r − σ−2

a )2, den is given by

den = m2σ−2
r σ−2

a + δσ2
(
‖c‖2‖s‖2 − | < c, s > |2

)
.

We come across with (‖c‖2‖s‖2 − | < c, s > |2) once more.
Hence for m ≥ 2,

Tr {XCR} = Tr
{

X
(v)
CR

}
+ Tr

{
X

(p)
CR

}
(15)

≈
mσ2

ω

‖c‖2‖s‖2 − | < c, s > |2
+

m(σ−2
r + σ−2

a )

den

The approximation is due to the large value of the distance from
the UAV sensors to the GMT, which holds true. The next result
follows.

Proposition 3.2: Suppose that the m UAVs have equal distance
‖δ�p‖ to the GMT with ‖δ�p‖ sufficiently large compared with
azimuth and range variances, and the velocity of the GMT. Let
{θk}

m
k=1, which specify the geometries of the m UAV sensors.

Then minimization of the achievable minimum error variance
Tr {XCR} over all possible unbiased estimation algorithms is
equivalent to maximization of

(
‖c‖2‖s‖2 − | < c, s > |2

)
over

the sensor geometries {θk}
m
k=1, provided that all m UAV sensors

are within the observable cone.
The above proposition states that optimal cooperative sensing

is equivalent to the mathematical problem of maximization of(
‖c‖2‖s‖2 − | < c, s > |2

)
, which will be investigated in the next

section. Before ending this section, we would like to study this
maximization issue for small values of m as follows. In the case
of m = 2,

‖c‖2‖s‖2 − | < c, s > |2 = sin2(θ1 − θ2),

leading to the orthogonal geometry (θ1−θ2) = 90o easily for the
optimal solution, Thus

Tr (XCR) ≥ 2σ2
ω +

2

σ−2
r + σ−2

a

.

The right hand side is attained, if the observable cone has an angle
no smaller than 90o.

In the case of m = 3, it can be shown that

max
θk

{
‖c‖2‖s‖2 − | < c, s > |2

}

=

⎧⎨
⎩

2.25, ∆ ≥ 120o,

2 sin2(∆), ∆ ≤ 90o,

2 + 2 cos(∆) cos2(∆/2), 90o ≤ ∆ ≤ 120o

where ∆ is the angle of the observable cone. In the general case
of m ≥ 2, we have

‖c‖2‖s‖2 − | < c, s > |2 =

m∑
k=2

k−1∑
i=1

sin2(θk − θi).

For optimal cooperative sensing, we need maximize the above
summation, which will be studied in next section.

4. OPTIMAL UAV SENSING GEOMETRIES

As shown in the previous section that the minimization of the
minimum achievable error variance among all unbiased estimation
algorithms is equivalent to maximization of (‖c‖2‖s‖2−| < c, s >
|2) over the UAV sensor geometries {θk}. This problem will be
solved in this section. For convenience, we denote ∆k,i = θk−θi,
and ∆ as the angle of the observable cone. There holds

‖c‖2‖s‖2 − | < c, s > |2 =

m∑
k>i=1

sin2(∆k,i). (16)

Based on the analysis in the previous section for m = 2, and
m = 3, it is expected that the optimal UAV sensing geometries
are easier to determine, if the observable cone has an angle ∆ no
greater than 90o. This is indeed true, as stated in the next theorem.

Theorem 4.1: Denote gm(θ1, θ2, · · · , θm) = ‖c‖2‖s‖2 − | <
c, s > |2. For ∆ ≤ π/2, we have

max
θ1,···,θm

gm(θ1, · · · , θm) =

{
m2

−1
4

sin2(∆), odd m
m2

4
sin2(∆), even m

(17)
Proof: Consider first the odd m. If we take ∆k,i = ∆ for

1 ≤ i ≤ µ, and µ + 1 ≤ k ≤ m where µ = (m − 1)/2 or
µ = (m + 1)/2, then

gm(θ1, θ2, · · · , θm) =
m2 − 1

4
sin2(∆).

It is claimed that the above is the maximum of gm(·, · · · , ·). We
use induction. The claim is true for m = 3, as shown in the
previous section. For m > 3 odd,

gm(θ1, · · · , θm) = gm−2(θ2, · · · , θm−1) + h(θ1, · · · , θm)

where h(θ1, θ2, · · · , θm) has the expression

h(· · ·) = sin2(∆m,1) +

m−1∑
i=2

[sin2(∆m,i) + sin2(∆i,1)]. (18)

For 1 < i < m, ∆m,i + ∆i,1 = ∆m,1 and ∆m,i − ∆i,1 =
∆m,1 − 2∆i,1. Thus with di(∆i,1) = sin2(∆m,i) + sin2(∆i,1),

di(∆i,1) = 1 − cos(∆m,1) cos(∆m,1 − 2∆i,1).

Without loss of generality ∆m,1 ≥ 0 is assumed, which is
equivalent to θm ≥ θ1. Since ∆m,1 ≤ ∆ ≤ π/2, di(∆i,1) is
maximized by taking ∆i,1 = 0 and ∆m,1 = ∆, leading to

max
∆i,1

di(∆i,1) = sin2(∆m,1) ≤ sin2(∆)

=⇒ max
θ1,···,θm

h(θ1, · · · , θm) = (m − 1) sin2(∆).

By induction assume that gm−2(θ2, θ3, · · · , θm−1) is maximized
by taking ∆k,i = ∆ for 2 ≤ i ≤ µ, and µ + 1 ≤ k ≤ m − 1
where µ = (m − 1)/2 or µ = (m + 1)/2 with maximum [(m −
2)2 − 1] sin2(∆)/4. With θ1 and θm added in, we obtain

max gm(θ1, θ2, · · · , θm) ≤ max gm−2(θ2, · · · , θm−1)

+max h(θ1, θ2, · · · , θm)

=
m2 − 1

4
sin2(∆),

which is indeed achieved. For the case of even m, we assign
{θk}

m/2
k=1 on one edge of the cone, and {θk}

m
k= m

2
+1 on the other

edge of the cone, leading to

gm(θ1, θ2, · · · , θm) =
(

m

2

)2

sin2(∆) =
m2

4
sin2(∆).
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The same induction procedure as earlier can be used to prove that
the above is the maximum, thereby proving (17) for the case of
even m, which is omitted.

Theorem 4.1 favors clearly the orthogonal assignment for
optimal geometries of the UAV sensors, if the observable cone
has an angle no smaller than 90o. Otherwise it favors to assign
roughly half of the UAV sensors on one edge of the cone, and the
other half or so on the other edge of the cone. While the result
in Theorem 4.1 is intuitively appealing, the induction procedure
in the proof is not extendible to the case of ∆ > 90o. A different
solution approach is necessary.

In light of Theorem 4.1, m2/4 seems to be an upper bound for
gm(θ1, · · · , θm), if ∆ ≥ 90o, which is true for the case of even
m. The next result is more general.

Lemma 4.2: Suppose that θk ∈ [0, π) are arbitrary for k =
1, 2, · · · , n. Then there holds

gm(θ1, θ2, · · · , θm) =

m∑
k>i=1

sin2(θk − θi) ≤
m2

4
.

In addition the above upper bound inequality is tight.
Proof: Let φk = 2θk for all k. Then

2gm(θ1, θ2, · · · , θm) =

m∑
k=1

m∑
i=1

sin2(θk − θi) (19)

=
m2

2
−

1

2

m∑
k=1

m∑
i=1

cos(φk − φi).

It is claimed that the following lower bound
n∑

k=1

n∑
i=1

cos(φk − φi) ≥ 0 (20)

holds, and is tight. Indeed we have

0 ≤

(
n∑

k=1

ejφk

)
∗
(

n∑
k=1

ejφk

)

= n +

n∑
k=2

k−1∑
�=1

(
ej(φk−φk−�) + e−j(φk−φk−i)

)

= n + 2

n∑
k=2

k−1∑
i=1

cos(φk − φi)

=

n∑
k=1

n∑
i=1

cos(φk − φi)

which concludes the proof of (20). Furthermore by taking φk =
2kπ/n for all k, we have

n∑
k=1

n∑
i=1

cos(φk − φi) = 0,

that shows that the lower bound in (20) is tight. It follows from
(19) that gm(θ1, θ2, · · · , θm) ≤ m2/4, which is tight, by taking
θk = kπ/n, in light of (20) again.

The upper bound established in Lemma 4.2 assumes that {θk}
are arbitrary, considering that sin2(·) is periodical with period π.
In our case, |∆k,i| = |θk−θi| are restricted to be within ∆, which
can be strictly and considerably smaller than π. Hence m2/4 may
not be achievable as shown in Theorem 4.1 in the case of odd m,
even if ∆ = π/2, that is rather different. However in the case of

even m, we obtain the following rather easily in light of Lemma
4.2.

Corollary 4.3: For ∆ ≥ π/2 and even m,
gm(θ1, θ2, · · · , θm) = ‖c‖2‖s‖2 − | < c, s > |2 ≤ m2/4,
which is attained.

The above result follows easily from the fact that m2/4 is an
upper bound, that is achieved for the case ∆ = π/2 and even m.

Remark 4.4: There are more than one assignment of {θk} in
achieving the upper bound m2/4, if ∆ > π/2 and m is even.
Indeed by grouping {θk}

m
k=1 into m/2 pairs, with each pair

satisfying ∆k,i = π/2, the upper bound m2/4 can be achieved,
regardless of the location of each pair so long as they are within
the observable cone, which is illustrated in Fig. 2 with m = 4. This
fact has its root in the necessary condition of optimality. Setting
its partial derivatives with respective to {θk} to zero yields

∂gm

∂θk
=

∂gm−2

∂θk
− 2 cos(∆m,1) sin(∆m,k − ∆k,1) = 0,

∂gm

∂θ1
= sin(2∆m,1)

[
1 +

m−1∑
k=2

cos(∆m,k − ∆k,1)

]
= 0,

∂gm

∂θm
= cos(∆m,1)

m−1∑
k=2

sin(∆m,k − ∆k,1) = 0.

Hence with {θk}
m−1
k=2 optimally assigned, then the enforcement of

∆m,1 = θm−θ1 = 90o will satisfy the above necessary condition,
regardless of the values of θ1 and θm, that happen to be globally
optimal for even m when ∆ ≥ π/2. This is advantageous in
applications, because the geometries of the first (m − 2) UAVs
need not be changed, if an additional pair of UAVs is added in.

vT

Fig. 2 Optimum sensing geometry for m = 4

The difficult case is clearly odd m, for which
gm(θ1, θ2, · · · , θm) has the maximum (m2 − 1)/4, if ∆ = π/2
as shown in Theorem 4.1. On the other hand, when ∆ is close
to π, gm(θ1, θ2, · · · , θm) has m2/4 as the maximum, by Lemma
4.2. The following result is constructive.

Theorem 4.5: Let gm(θ1, θ2, · · · , θm) be as in Theorem 4.1
with m odd. If ∆ ≥ 2π/3, then

max
θ1,···,θm

gm(θ1, θ2, · · · , θm) = m2/4.

Proof: We need only show that m2/4 is achievable, because it
is an upper bound by Lemma 4.2. For m = 3, the result from the
previous section can be used to show that

max
θ1,θ2,θ+3

m=3∑
k>i=1

sin2(θk − θi) = 3 sin2(π/3) =
32

4
,

which holds by taking ∆3,2 = ∆2,1 = π/3 and ∆3,1 = 2π/3.
For m > 3 odd, we set {θi}

m
i=1 as illustrated in Fig. 3 with

n = (m − 1)/2. It is claimed that gm(θ1, · · · , θm) = m2/4.
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Using the induction consider first m = 5. We have
m=5∑

k>i=1

sin2(θk − θi) = 6.25.

Thus the result is true for the case m = 5. For m ≥ 5 that is
odd, the decomposition in the proof of Theorem 4.1 can be used
to arrive at

gm(θ1, θ2, · · · , θm) =
(m − 2)2

4
+ h(θ1, θ2, · · · , θm),

where gm−2(θ2, · · · , θm−1) = (m − 2)2/4 is assumed by the
induction argument, and

h(θ1, θ2, · · · , θm) = (m − 1),

by ∆m,i + ∆i,1 = ∆m,1 = π/2. It follows that

gm(θ1, θ2, · · · , θm) =
(m − 2)2

4
+ (m − 1) =

m2

4

that concludes the proof.

oo

θ
θ

θ
θ

v
T

15 15

n+2θ
n+3,...,2n+1

n+1

1,...,n−1

n

Fig. 3 Optimum sensing geometry for m = 2n + 1

Fig. 3 shows that there are (n − 1) = (m − 3)/2 orthogonal
pairs. In fact these (n − 1) orthogonal pairs need not be in the
same location as illustrated in Fig. 3 for which the optimality still
holds, that follows from the same argument as in Remark 4.4. For
the case π/2 < ∆ < 2π/3 and odd m, the situation is more
delicate. Nevertheless we have the following result.

Theorem 4.6: Suppose that m is odd and ϕo ∈ [π/4, π/2)
satisfies 1 + (m − 1) cos(2ϕo) = 0. Then for ∆ ≥ ∆o = 2ϕo,
there holds

max
θ1,···,θm

gm(θ1, θ2, · · · , θm) = m2/4

Proof: We choose {θk}
m
k=1 such that

θ2� − θ2�−1 = 2ϕ, θ2� − θm = θm − θ2�−1 = ϕ (21)

for � = 1, 2, · · · , (m − 1)/2. Then it can be verified that

gm(θ1, · · · , θm) =
(m − 1)

4

[
4 sin2(ϕ) + (m − 1) sin2(2ϕ)

]
,

which is denoted by w(ϕ). Setting

dw(ϕ)

dϕ
= (m − 1) [sin(2ϕ) + (m − 1) sin(2ϕ) cos(2ϕ)] = 0

yields sin(2ϕ) = 0 or 1+(m−1) cos(2ϕ) = 0. We are interested
in the case 0 �= 2ϕ < π, by the fact that 2ϕ ≤ ∆ < π. Hence
ϕ = ϕo is the maximal, yielding

w(ϕo)

m − 1
= sin2(ϕo) +

(
m − 1

4

)
sin2(2ϕo)

=
1 − cos(2ϕo)

2
+
(

m − 1

4

)(
1 − cos2(2ϕo)

)
=⇒ w(ϕo) =

m2

4
,

by cos(2ϕo) = −1/(m − 1).

It is noted that 2ϕo = 2π/3 = 120o for m = 3, that coincide
with the result in the previous section, and that in Theorem 4.5.
For m = 5, we have 2ϕo = 104.5o. Hence as m increases, 2ϕo

approaches to π/2 = 90o, consistent with the result for even m.
The next result deals with the case of odd m with 90o < ∆ < 2ϕo,
which is the last scenario uncovered.

Corollary 4.7: Suppose that m is odd, and ϕo ∈ [π/4, π/2)
satisfies 1 + (m − 1) cos(2ϕo) = 0. If 90o < ∆ < 2ϕo < 120o,
then with n = (m − 1) there holds

max
θ1,···,θm

gm(θ1, · · · , θm) =
n

4

[
4 sin2(∆/2) + n sin2(∆)

]
.

The proof of this corollary is skipped due to page limit.

5. CONCLUSION

We studied the cooperative sensing problem for estimation of
the position and velocity of the GMT by employing multiple UAV
sensors. The measured data are radar signals of azimuth, range, and
range rate corrupted by Gaussian noise. Assuming equal distance
from UAV sensors to the GMT, the geometries of the UAVs are
uniquely determined by their angular positions. We have employed
the Cramér-Rao bound to obtain the minimum achievable error
variance based on the assumption that the measurement noise
is Gaussian to which the Slepian-Bangs formula applies. The
minimum achievable error variance is a function of the UAV
sensors geometries, that favors orthogonal, or near orthogonal
assignment for the UAV sensors. We comment that except in the
case of odd m and 2ϕo ≤ ∆ < 120o, the optimal UAV geometries
admit the property that no change needs be made for the existing
UAVs, if an additional pair of UAV sensors is added into the
existing ones, that is why induction argument is used in the proof,
as commented in Remark 4.4. This is advantageous in applications.
However in the case of odd m with 90o < ∆ < 120o, this
advantage is lost. The geometries of all the UAV sensors need
be reconfigured, when new ones are added in. We would like to
point out that the optimal cooperative sensing problem does not
take the trajectories of the UAV sensors into account, which is
currently under study.
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